SESTSUIPSE

YRS,



Topic

Reference

Recursion and
Backtracking

Ch.1 and Ch.2 JeffE

Dynamic Programming

Ch.3 JeffE and Ch.15 CLRS

Greedy Algorithms

Ch.4 JeffE and Ch.16 CLRS

Amortized Analysis

Ch.17 CLRS

Elementary Graph
algorithms

Ch.6 JeffE and Ch.22 CLRS

Minimum Spanning
Trees

Ch.7 JeffE and Ch.23 CLRS

Single-Source Shortest
Paths

Ch.8 JeffE and Ch.24 CLRS

All-Pairs Shortest Paths

Ch.9 JeffE and Ch.25 CLRS

Maximum Flow

Ch.10 JeffE and Ch.26 CLRS

String Matching

Ch.32 CLRS

NP-Completeness

Ch.34 CLRS




String matching — s as, gl

* Finding all occurrences of a pattern in a text



Formal definition of string marching

text T a | b | c [FalEElEalE=y D

pattern P

* Thetextisanarray T [1..n] of lengthn
* That the patternisanarray P|1..m| oflengthm < n

* Elements of P and T are characters drawn from a finite alphabet X

* ForexampleX = {0,1}orX = {a,b,...,z}.
e Character arrays P and T are often called strings of characters

Pattern P occurs with shift s in text T:(p occurs beginning at positions +1in T)

f0 <s<n-—-mandT|[s + 1..s + m|] = P[1..m]
(thatis,if T [s + j] = P[j],forl < j < m).



Some string-matching algorithmes:

Algorithm Preprocessing time Matching time
Naive 0 O((n—m+ 1)m)
Rabin-Karp O (m) O((n—m+ 1)m)
Finite automaton O(m|2]) ()
Knuth-Morris-Pratt G (m) ®(n)

The preprocessing time is based on the pattern
This course covers the algorithms of Naive, Radin-Karp and Finite automaton



The naive string-matching algorithm

NAIVE-STRING-MATCHER(T . P)

I n < length|T]

2 m < length|P ]

3 fors < Oton—m

4 doif P[1.. m]|=T[s+1..5+m]

S then print “Pattern occurs with shift” s

takes time O((n — m + 1)m), and this bound is tight in the worst case.

Example : text a™ and pattern a™



RABIN-KARP-MATCHER(T . P, d, q)
Il n < length|T |

2 m < length[P]

3 h <« d""mod g

4 p <0

5 thy <0

6 fori < ltom > Preprocessing.
7 do p < (dp + P[i]) mod ¢

8 to < (dto+ T|i]) mod ¢

9 fors < 0Oton—m > Matching.

10 do if p=I

11 thenif P[1..m|=T[s+1..5 + m]
12 then print “Pattern occurs with shift” s
13 ifs <n—m

14 thent, | < (d(t; —T[s+ 1lh) +T[s +m + 1]) mod ¢



Use hashing

RabinKarp(S[1..n], P[1..m])
hpattern = hash(P[1..m]);
forifrom 1to n-m+1
hs = hash(S][i..i+m-1])
if hs == hpattern
if s[i+1..i+m] == pattern[1..m]
print “Pattern occurs with shift i”



String matching with finite automata



Finite automata - definition

A finite automaton M is a 5-tuple (Q, qg,, A, %, 0), where

Q a finite set of states

q, the start state

A c Q — a distinguished set of accepting states

) a finite input alphabet

0 a function from Q x 2 into Q, called the transition function of M.



Finite automata — how it works

A finite automaton M is a 5-tuple (Q, g,, A, 2, 0), where

Q a finite set of states

9, the start state

A C Q — a distinguished set of accepting states

)2 a finite input alphabet

[0} a function from Q x X into Q, called the transition function of M.

The finite automaton begins in state g0 and
reads the characters of its input string one at a time.

If the automaton is in state g and reads input character a, it moves (“makes
a transition”) from state g to state 6(qg, a).

Whenever its current state g is a member of A, the machine M is said to
have accepted the string read so far. (An input that is not accepted is said to
be rejected)

11



Finite automata — example

A finite automaton M is a 5-tuple (Q, q,, A, %, 0), where

Q a finite set of states
9, the start state input
A C Q — a (accepting states) a

¥ finite | t alohabet state a b .
a finite input alphabe
o) a function from Q x X into Q, 0 L]0 ‘Q’l
(transition function). 1 00 v

begins in state g0 and b

reads input string one at a time.
in state g and reads input character a, it moves to state 6(q, a).

current state g is a member of A: accepted the string read so far.

12



final-state function

* from X" to Q such that ¢p(w) is the state M ends up in after scanning
the string w

* M accepts a string wifand only if p(w) € A.

* The function ¢ is defined by the recursive relation
¢(e) = q0,
p(wa) = 6(p(w),a)forwel’, a€X



String-matching automata

* There is a string-matching automaton for every pattern P;

* Let see an example for pattern P = ababaca.



input

state a b c¢ P
O o0 0| a
1 1{2|]0| b
2 |3[(0|0| a
3 |1(4|0| b
4 (5/0(0] a
5 l114ale6! c . — 12 3 4 5 6 7 8 9 1011
6 [(7/]0]0]| a I'li] — a b a b a b ac a b a
2 T2 lo state p(Ti) 0 1 2 3 45 45 o2 3

15



String-matching automata
suffix function

* Define an auxiliary function o, called the suffix function
corresponding to P.

* Which is a mapping from £* to {0, 1, ..., m} such that g (x) is the
length of the longest prefix of P that is a suffix of x:

o(x) = max{k : P, 3O x}.

* The suffix function o is well defined since the empty string Py = ¢ isa
suffix of every string

As examples, for the pattern P = ab, we have o(¢) =0, g(ccaca) = 1, and o(ccab) = 2.
For a pattern P of length m, we have o(x) = m if and only if P 2 x.

16



string-matching automaton
corresponds to a given pattern

define the string-matching automaton that corresponds to a given
pattern P[1..m]:

* The stateset Qis {0, 1, ...,m}. The start state q, is state 0, and state
m is the only accepting state.

* The transition function 6 is defined by the following equation, for any
state g and character a: 0(q,a) = a(F;a)



How construct automaton

COMPUTE-TRANSITION-FUNCTION (P, )

1 m < length|P]

2 forg < 0tom

3 do for each character a € X

4 do k < min(m +1,qg + 2)
5 repeat k < k — 1

6 until P, 3 P,a

7 o0(q,a) <k

8 return o

18



Time complexity?

COMPUTE-TRANSITION-FUNCTION (P, )

1 m < length|P]

2 forg < 0tom

3 do for each character a € X

4 do k < min(m+1,qg + 2)
5 repeat k < k — 1

6 until P, an

7 d0(q,a) <k

8 return

19



Construct the string-matching automaton for the pattern P = aabab
and illustrate its operation on the text string T = aaababaabaababaab



21



